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Abstract

This paper is concerned with probabilistic analysis of initial member stress in geometrically imperfect regular lattice
structures with periodic boundary conditions. Spatial invariance of the corresponding statistical parameters is shown to
arise on the Born-von Kdrmén domains. This allows analytical treatment of the problem, where the parameters of stress
distribution are obtained in a closed form. Several benchmark problems with beam- and plate-like lattices are con-
sidered, and the results are verified by the direct Monte—Carlo simulations. Behaviour of the standard deviation as a
function of lattice repetitive cell number is investigated, and dependence on the lattice structural redundancy is pointed
out.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The presence of geometrically imperfect members in a lattice structure is almost inevitable in practice. In
terms of the static performance, the most undesirable is member length lack of fit due to manufacturer’s
tolerance or temperature variations. After assembling a statically indeterminate structure with imperfect
member lengths, there can arise considerable bar tensions even before applying the external loading. As
investigated by Schmidt et al. (1976, 1983), these unknown stresses may even cause the premature buckling
of a particular member; this may further lead to overall progressive collapse of the entire assembly at loads
well below its theoretical critical design load. Classical structural theory can mislead the designer into
assuming that lattice redundancy should guarantee safety and higher performance, since the structure
would remain stiff when some of its redundant members failed. Though with redundancy, the degree by
which individual members are critical to structural integrity reduces, Schmidt et al. (1976) have shown that
a higher degree of statical indeterminacy usually imposes larger initial stresses, which is more likely to
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trigger failure, and it may have no effect on stopping the progressive structural collapse. The sudden col-
lapse of Hartford Coliseum, Connecticut, USA, space roof structure in 1978 under one-half of its design
load is known to have been caused by these effects (Smith and Epstein, 1980; Thornton and Lew, 1984).

Thus it is very important to take into account initial bar tensions, even though their calculations may
require considerable effort. In the earlier works by Schmidt et al. (1976, 1983) and also El-Sheikh (1995,
1997), the authors employed a deterministic approach to investigate the changes in structural performance
due to given lack of fit of particular members at known spatial locations. However, with the hundreds
of members and joints in realistic lattices, a statistical description of the initial stress problem would be
obviously preferable.

The probabilistic approach to the statics of regular lattices remains relatively undeveloped, in contrast to
the area of dynamics, where much greater contributions have been made (see, for example, Li and Bena-
roya, 1992; Langley, 1994; Lin, 1996). A probable reason is the need for involved multi-dimensional dis-
tributions to yield the sought probability for the member stress, as depending on a variety of parameters:
the members’ lengths variance, its positioning within a representative substructure and, what is most
crucial, the global spatial location of such a substructure. Due to the complexity of such a probability
distribution, the numerical Monte—Carlo simulation has been considered as a better method of its evalu-
ation, rather than analytical study. Affan and Calladine (1989) accomplished such an analysis to obtain
approximate distributions for the initial bar tensions in a two-layered space grid, due to given standard
deviations in length, from a series of 200 computer simulations.

Since Monte—Carlo techniques are known to be extremely expensive tools for probabilistic structural
analysis, a cheap semi-analytical approach is presented in this paper for problems with periodic (Born-von
Karman) boundary conditions. Due to the cyclic symmetry of Born-von Kdarman domains, the probability
distributions for initial stress appear to be spatially invariant, i.e. independent of the particular locations of
typical members in the structure. This drastically simplifies the analysis of large structures and provides the
statistical parameters of these distributions in a straightforward way, in terms of the lattice Green’s
functions (the Green’s functions’ definitions are given in Sections 2 and 3).

2. Problem statement and background

Consider the following problem definition: there are given deterministic quantities 4, E and L (respec-
tively, the cross-section area, Young’s modulus and perfect length) of bar members in a regular pin-jointed
lattice. Actual member length, however, does not match the perfect geometry, and there is given a prob-
ability distribution (same for all members) for the relative lack of fit,

e=AL/L. (1)

AL is the difference between the actual and perfect lengths. The distribution for ¢ is normal, defined by
two statistical parameters: mean value u, (logically, p, = 0) and standard deviation s, (this notation is used
instead of the conventional ¢ to avoid confusion with member stresses). One seeks to express analytically
the parameters of probability distributions for the initial stresses in lattice members through 4, E, L and s,.
The boundary conditions are periodic, i.e. Born-von Kdrman (for detailed description of these boundary
conditions, see, for example Keane and Price (1989), and Karpov et al. (2002)).

2.1. Model for geometric imperfections

For modelling geometric imperfections, a probabilistic extension of the method by El-Sheikh (1995,
1997) is accomplished in this paper. Within the approach, the force
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required to stretch or shorten a disconnected imperfect member for fitting into the ideal geometry is first
calculated. Then the self-equilibrated pair of nodal loads P and —P are applied along the member’s lon-
gitudinal direction to the joints of the ideal lattice that are connected by this member (Fig. 1). Finally, the
strain in the disordered lattice is found as

£ = g _ g 3)

where ¢ is the strain of this member in the ideal structure under additional loads P.

Remarkably, this method reduces the analysis of an imperfect lattice (free of external loads) to solving
the loaded ideal structure. As was shown by Karpov et al. (2002), the latter problem can be most efficiently
treated with techniques based on the discrete Fourier transform (DFT). We briefly outline these techniques
in Section 2.2, and then combine them with El-Sheikh’s ideas (2) and (3) in Section 3 to obtain an effective
probabilistic approach.

2.2. Discrete Fourier transform solutions for regular lattices

Imposing periodic (Born-von Karman) boundary conditions is equivalent to formal merging of
the opposite edges of the lattice; this eliminates the difference between the boundary and internal nodal
locations. These conditions, therefore, emulate cyclic symmetry on periodic domains. The beam- or plate-
like lattices become topological rings or toruses, and their stiffness matrices respectively acquire the cyclic
or double-cyclic forms:

k, ks 0 Kk

K — ki k, ki 0
0 ki ki k;
ki 0 ki k
b, b 0 b ¢ ¢ 0 ¢ a, a3 0 a;
b; b, by 0 ¢ ¢ ¢ O 0 a, a a3 0
0 b, by b; 0 ¢ & o 0 a a a3
b; 0 b b, ¢ 0 ¢ ¢ a; 0 a; a

a, a3 0 a, b, b; 0 b ¢ ¢ 0 ¢
a; a, a3 0 by b, bs 0 ¢ ¢ ¢ 0
0 a a a3z 0 by by b; 0 ¢ & ¢
a3z 0 a, a, by 0 b, b ¢ 0 ¢ o
a a3 0 a b, by 0 b ¢ ¢ 0 ¢

a a aj 0 b1 b2 b3 0 C G G 0

0 0 a, a a3 0 by b, bs 0 ¢ ¢ ¢

a3 0 a, a, by 0 b b & 0 ¢ o

¢ ¢ 0 ¢ a a3 0 a; b, by 0 b
¢ ¢ ¢ 0 0 a, a, a3z 0 by by, by 0
0 ¢ ¢ ¢ 0 a, a a3 0 b; b, bs
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Fig. 1. Modelling of imperfect members by El-Sheikh (1995): short member (a), long member (b).

Generally, the size of blocks k, a, b and ¢ is R x R, where R is the number of degrees of freedom for a
typical repeating node or set of nodes in the structure. The first matrix, as well as each superblock of the
second one (confined by the dashed lines), consists of N x N blocks, N is the number of repetitive cells in
the lattice along the horizontal direction. There are totally M x M superblocks in the second matrix, where
M is the number of cells along the second spatial direction. For example, for the lattice shown in Fig. 4a,
R =2and N = M = 5. For the chain of elastic bars, Fig. 3, whose nodes are confined to move along the x-
axis only, we have R = 1 and M = 1. Assuming, for example N = 4, and utilising the individual member’s
stiffness,

EA(1 -1
(m — =4
=7 (1 1 > ®)

one obtains the cyclic global matrix, as a particular case of the more general form (4):

2 1 0 -1

EAl -1 2 —1 0

K=710o -1 2 21| (6)
10 -1 2

These example structures are discussed in more details in Section 4.

Noteworthy, the maximum number of distinct blocks of each type k, a, b or ¢, as well as the number of
the distinct superblocks in (4) is three. Thus, the stiffness matrix of a regular beam or plate lattice is
comprised respectively of not more than three or nine repeating R x R blocks, when periodic boundary
conditions are applied. Note also that any column or row of the cyclic forms (4) contains all the distinct
blocks available. Physically, the diagonal block shows stiffness at a current node with all other nodes being
fixed, and the remaining blocks describe the available stiffness couplings between the current and neigh-
bouring nodes.

Both the single- and multi-cyclic systems can be effectively solved by the approach proposed by Karpov
et al. (2002). Within this approach, first the typical nodal location is defined as a minimum set of nodes able
to generate the rest of structural joints, when translated along one (beam lattices) or two (plate lattices)
spatial directions. Next, the associate substructure is introduced to include all the structural elements in-
teracting with the nodes of one typical location (examples are shown on Figs. 2, 4b and 5b). Importantly,
the associate substructure is the minimum structural domain, whose stiffness matrix contains all the distinct
blocks available for a global matrix (4).
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Fig. 2. Substructuring of a beam-like lattice.

Introduce the column-vectors of the generalized loads and displacements f and u, as related to the de-
grees of freedom of only one typical nodal location. Then, constructing the associate substructure stiffness
matrix, one logically finds the blocks for (4) located along the middle horizontal and vertical lines of the
matrix:

ks -\ fu(n—1) f(n—1)
k1 k2 k3 u(n) = f(l’l) (7)
ki - u(n+1) f(n+1)

for a one-dimensional beam-like structure, or

c3 un—1,m—1) f(n—1,m—-1)
c u(n,m—1) f(n,m—1)
c u(n+1,m—1) fn+1,m—-1)
b; u(n—1,m) f(n—1,m)
a; a a3 b] bz b3 C C C3 u(n,m) = f(n,m) (8)
b, u(n+1,m) f(n+1,m)
a; un—1,m+1) f(n—1,m+1)
a, u(n,m—+1) f(n,m+1)
a; u(n+1,m+1) fn+1,m+1)

for plate-like lattices.
Next consider the beam- and plate-like cases separately. For the purposes of further discussion, intro-
duce the following notations for the matrix blocks of (7):

K(1)=k;, K0)=k, K(-1)=Kks. 9)

According to (7) and (9), the external loads applied to any nth nodal location will be in equilibrium with
structural reaction, if

K(Du(n — 1) + K(O)u(n) + K(-u(n+ 1) =f(n), n=0,1,...,N—1. (10)
This second order finite difference scheme represents the governing equation of static equilibrium of a
repetitive beam-like lattice on an N-periodic domain. It can be reduced to the discrete convolution form

niiK(n—n/)u(n/):f(n), n=0,1,....,N—1, (11)

n'=n—1

where K(n) acquires the sense of a stiffness kernel function, whose values are available from (7); u(n) is the
sought displacement function, and function f(n) describes the external loads distribution.
Using the formal N-periodic extension for the displacement, load and kernel functions,

u(n+oN) =u(n), f(n+oN)=1(n), Kn+oN)=Kmn), v=0,+1,£2,..., (12)

and applying the finite discrete Fourier transform to both sides of equation (11)
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sz1 Z K(n — n')u(n') exp ( - i27rp]£v> = gf(n) exp ( - i2np]%), (13)

n=0 n'=n—1

one obtains a set of N decoupled R x R matrix equations in the Fourier domain:

K(p)d(p) =f(p), p=0,1,....N—1. (14)
Here, the Fourier images of functions (12) read

i(p) = Nzld(n) exp (—i2np%),
f(p) = gf(n) exp (—i27rp]£v)7 (15)

3

_

K(p) = Z K(n) exp (—ian]%).

n=-—1

Further inversion of matrix I~((p), which can be often accomplished symbolically, and application of the
inverse DFT yields the sought n-domain solution:

u(n) = % Z K~ (0)f(p) exp (ian%). (16)

Substitute the Fourier image f (p) into (16), employing n = n’ for (15) to distinguish the summation index
there from the argument of function u(n), and rearrange to give

u(n) :% NZ_; K'(p) NZ_lf(n’) exp (—i2np%) exp (ian%) = AiZ:;GN(n —n)f(n'), (17)

n'=0

1
N
p

M=

Gy(n) = K~'(p)exp (iznp]ﬁv). (18)

I
=

In fact, matrix K(p) appears to be singular for p = 0, therefore equation K(0)d(0) = f(0) is solved

separately to give the following correction to (18)
1 &3~ . n ~ K!
6 = 2 e (). G = { R 070 (19)

Here, the diagonal matrix A is comprised of non-zero eigenvalues of I~((0), and the columns of rect-
angular matrix W are the corresponding eigenvectors; W™ is the pseudoinverse of W. In case of a zero
matrix K(0), one assumes Gy (0) = 0. Matrix function (19) is the displacement Green’s function for Eq. (11)
on the cyclic N-periodic domain. The convolution sum (17) over the Green’s and the load functions gives a
particular non-homogeneous solution to (11) to describe the lattice deflections precise up to a rigid-body
motion.

The physical interpretation of the displacement Green’s function, according to (17), is that the »th column
of Gy(n — 1) represents deflections of the nth nodal set caused by the rth component of a unit load vector
applied to the n'th nodal location of a repetitive framework, which is formally closed to form the N-periodic
ring. Obviously, the Green’s function is defined by the member stiffnesses and lattice geometry only.

The two-dimensional (plate-like) extension of the above approach can be accomplished by denoting the
blocks of (8) as
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K(1,1)=a;, K(0,1)=a,, K(-1,1)=a
K(I,O) =b, K(Ovo) = by, K(—I,O) = bs, (20)
K(1,-1)=¢;, K(0,-1)=¢,, K(-1,-1

and writing the governing double convolution form:

n+1 m+1
Z Z K(n—n',m—mu@n',m)==Ffnm), n=12,... N-1, m=12,....M—1. (21)
n'=n—1 m'=m—1
Solution to (21) can be similarly obtained in terms of the two-dimensional (N,M)-periodic Green’s
function with the use of double discrete Fourier transform:

N-1 M1
u(n,m) = Z Z Gyy(n—n',m—m)t(n' m), (22)
n'=0 m'=0
1 KE . n m
Gy (n,m) = NM 2y s GN,M(.p7 q) exp (IZR(PN + QM>)7 (23)
K'(pg), p+q>0
G , — ) )
var(p4) {WA "W, p=g=0
~ . n m
K(p,q) Z Z n,m exp( 12n(pﬁ+q]\—4)). (24)

n=—1 m=

Here, matrices A and W of (24) are constructed from the non-zero eigenvalues and the corresponding
eigenvectors of K(0,0); if K(0,0) = 0, then Gy (0,0) = 0.

3. Spatial invariance of statistics
3.1. Beam-like problem

Return to the original problem definition (the first paragraph of Section 2), and consider first the case of
beam-like lattices. Isolate mentally a minimum set of typical bar members the typical cell (an example is
shown on Fig. 2), numbered with a single spatial parameter n, and introduce the following subsidiary
objects, which depend on the value n:

o\(n) &1 (n) o (n)

o(n) = | oa(n) |, e(n)=| efln) |, 8(i)(n): 8<2i>(n) ,

(25)
A0 ..
)=L , AmM=A=] 0 4 ...|, n=0,1,...,N—1.
Here, o4(n), & (n), ¢’ (n), L, Ay are the stress, relative lack of fit, strain in the ideal lattice, perfect length

and cross- sectlonal area of the kth member in the nth typical cell, respectively. The Young’s modulus is
supposed to be the same throughout the lattice.
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Assume also that there is known the connectivity matrix B for the typical cell with ideal geometry. This
matrix relates member elongations and nodal displacements, therefore

Le® (n) = B(d(ff—?l)) (26)

for any n within the perfect lattice.

Further consider a particular realization of the random lack of fit €(n) for all components of this vector
and for all n =0,1,...,N — 1. Then, the ideal lattice is to be subjected to the corresponding nodal loads
that can be written, for this realization, in terms of the above notations as

(f(zi(—ril—)l) ) = EaAs(n), (27)

where a is the equilibrium matrix for the typical cell, relating the nodal and member forces (2). Note, the
equilibrium and connectivity matrices are related as

a’ =B. (28)
According to (17), the displacements for (26) caused by the loads (27) are

a(n) = 3 (Gln — w)E() + Gy(n — 1 — (' + 1),
n'=0 o (29)
dn+1)=> (Gy(n+1—n)Y(n)+ Gy(n—n)(n' +1)).

/

Il
o

n

By rearranging (29) to a matrix form and subsequently employing (27) and (28), we obtain

(any) = ( A GNG(f';(;lZ'f/))(f(i'('i)l))

n

e (S Sl Yran

n

Thus, the strains ¢ (n) in an ideal lattice can be expressed through the displacement Green’s function,
according to (26) and (30):

Q) d(n) Gy(n—n')  Gy(n—1=n")\or,s_
e’(n) =L~ B( d(n + ) EL” BZ(GNn—l—l—n) Gy(n—n) P Ag(n'). (31)
Due to (3) and (31), the vector of stresses for disordered lattice can be written in terms of the lack of fit as
. N-1
o(n) = E(eV(n) — g(n)) = Zc)N(n —n)e(n'), (32)
n'=0

where @y (n — ') is the matrix function:

R A (e P R L L S (%)

(6,,» 1s the Kronecker delta and I is the identity 2R x 2R matrix). This function represents another class of
periodic Green’s functions: namely, the rth column of @y(n — n’) represents member stresses in the nth
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typical cell, caused by a unit relative lack of fit of the rth member in some distant (n')th cell, on a cyclic N-
periodic domain.

As follows from (23), each member stress is essentially given by a linear superposition of the lack of fits
all around the lattice, where the components of matrix @y (n — n’) serve as the coefficients for that super-
position. At the same time, when a random variable ¢ is a linear combination of several other random
variables x(n) with coefficients a(n),

q:Za(n)x(n), n=0,1,..., (34)

n

and all x(n) are independent variables, statistical parameters of the distributions for ¢ and x(n) are simply
related:

By = a5 =30, (35)

Here, y,, s, are the mean and standard deviation for ¢, and y(n), s,(n) are means and standard devi-
ations for x(n). Introducing the vectors of means and standard deviation for the member stresses and lacks
of fit in the nth typical cell,

o (n) = (o ()t (n) )", s,(n) = (50,(n) s0y(n) ...)T,

- : (36)
r(n) = (1, (n) i, (n) )7, sy (n) = (s5,(n) s,(n) ...)7,
one can write, according to (32) and (35),
N-1
B, (n) =0, s,(n) = | > @}(n—n)si(n) (37)
=0

(the second power and radical notations, here and below in this section, imply taking the corresponding
operations over each component of the matrix @y (n — n’), vector s.(n), and the sub-radical vector res-
pectively). This fully describes the normal distributions for the member stresses throughout the lattice.

It is logical to assume that the standard deviation for the lacks of fit, s, does not depend on the value n:

B(n) =0, s,(n) = | > @ (n— w2 (38)

This situation relates to the case of an absence of a strategy to put, for example, better-fit members in some
particular areas of the lattice. It is important to note that @3 (n — n’), similar Gy(n — ') and @y(n — '), is
an N-periodic function of its argument, therefore,

N-1

S n—n) =Y ok ()= @) (39)

n'=0

for any integer n. Thus, we crucially obtain spatial invariance of the sought statistics on the cyclic domains:

In practice, this implies that within the periodic Born-von Kdrmdn model, the standard deviations have to
be calculated for a small number of members in one typical cell only, instead of possibly thousands of bars
in an entire lattice.
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3.2. Plate-like problem
For the plate-like case, the (n,m)th typical cell is normally confined between four nodal locations (n, m),

(n+1,m), (n,m+1) and (n+ 1,m + 1)—see Figs. 4c and 5c. Then, using arguments similar to (26)—(33)),
we obtain the two-dimensional Green’s function for the initial stress in the form:

@y (1, m)
Gy yr(n,m) Gyy(n—1,m) Gyyu(n,m—1) Gyyu(n—1,m—1)
_EL B x Gyyu(n+1,m) Gy y(n,m) Gyyu(n+1,m—1) Gyy(n,m—1)
Gyy(n,m+1) Gyy(n—1,m+1) Gy v (n,m) Gyy(n—1,m)
Gyu(n+1,m+1)  Gyuyn,m+1) Gyyu(n+1,m) Gy (n,m)
x BTA — ES, 00,0l (41)

Here, B, L and A are similarly the connectivity matrix, diagonal matrices of perfect member lengths and
cross-section areas for the bars of a typical cell, and Gy (n, m) is a two-dimensional displacement Green’s
function (23).

Finally, the statistical parameters of distributions for the initial member stresses on a double cyclic
domain are

B, = 0, s, = w%/‘M(m m)s§7 (42)

where the components of vectors p_, s, are means and standard deviations for the stress in typical members
at arbitrary spatial locations, and s, is the given standard deviation for the relative lack of fit of such
members.

4. Illustrative examples

Example 1. Consider the chain of an arbitrary number N of elastic elements, supported as shown in Fig. 3.
Assume the structure is free of external loads. The distance between the left and right support is deter-
ministic, and equal to NL, where L is the perfect length of the elements. However, the members do not
match this perfect length in a random way, due to temperature gradients or manufacture’s tolerance. The
relative lack of fit ¢ of the disassembled elements is given by the standard deviation s,, and one seeks to find
the distribution for the initial stresses after assembling the structure.

This type of fixtures is an example of Born-von Kdarman boundary conditions. They assure the same
(trivial) boundary displacements, and the zero resultant of end support reactions. Thus, the structure is a
topological ring (with nodes n = 0 and n = N formally merged), and the approach presented in Section 3.1
will yield an analytically exact solution to this problem. The values of the stiffness operator’s kernel
function give, for this lattice,

EA

K(-1)=K() = -2, K(O)zz%. (43)

0 1 n—1 n n+1 No1 N ()
b— %2 2 3%

Fig. 3. Chain of N elastic elements.
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The N-periodic displacement Green’s function can be then constructed according to Eq. (19). The
Fourier image Ky(p) is here the scalar quantity,

B0~ (o () 2 ) ~ 2 () z

so that we obtain

E ’ N-I ‘
Gy(n) = N pz:l: K,'(p) exp (12np%) = ﬁ ; csc? (%) exp (12np%). (45)

The typical cell for this lattice is represented by a single member, for whom the connection matrix ac-
quires the form

p=(-1 1) (40)

Utilising (45) and (46), construct the initial stress Green’s function, according to (33), employing also
L=Land A=4,

_EZA Gy (n) Gy(n—1) T s
@ = gty Gy )P

( Aicsc( )exp(iznpan

N-1
. n+1
=) esc? < ) exp <l2np ¥ )) —ES,p. (47)
This can be simplified as the following:

p=1
E X L R/ n+1
oy(n) = w ;csc (ﬁ) ( exp (12np N )> — Ed,o
N-1

£ Z () s (57) exp (20 ) = s = 5 3~ exp (20 ) ~ s)

Add and subtract the term E/N to obtain the entire period summation in (48), and to further simplify as

( Ni ex (127'[]) ) ]lvan,o> E((s,,,o %5,1,0) - f]%. (49)

p=

L
E
4N

-1 . n .
N > + 2exp (12npﬁ> — exp <127rp

Importantly, the stress Green’s function (49) reads a constant quantity for all n. This physically implies
that the initial member stress does not depend on the distance from the element where it is measured to the
element, whose lack of fit causes this stress. In other words, whatever particular (deterministic) lacks of fit
are imposed, the value of the corresponding initial stress will be the same throughout the lattice.

Finally, the sought standard deviation can be found according to (40):

il Nl g2 E?  Es,

_ 2 — -

Sy = (0 s =, — =5\ == .
2

por ‘s N N JN

(50)

The distribution for stresses will logically become narrower when the total number of chain elements is
growing. For an infinite chain, N — oo, any finite lack of fit produces zero initial member stress.
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Noteworthy, the same result can be also obtained from elementary arguments. Indeed, if the sequence

e(n)=AL(n)/L, n=0,1,...,N — 1 gives a particular realization for the members’ lacks of fit, the initial
stress can be written for a chain of N elements, as
E V=l
U:N;s(n). (51)

Here, we initially presumed its invariance throughout the structure, due to the specified means of sup-
port. Since all ¢(n) are independent random values with the same standard deviation s,, formulas (35) and
(51) can be directly used to give s, as (50). This lends support to the validity of the present approach. For
more complicated structures, with a varying stress Green’s function, such elementary arguments cannot be
normally found. Then the sums of (40) or (42) have to be evaluated directly for particular material
properties and values N, M, and if required, the results can be verified by Monte—Carlo simulations, as in
the next examples.

Example 2. Assume there are applied cyclic boundary conditions on the X-braced planar grid depicted in
Fig. 4, there exist random imperfections of the members’ ideal lengths described by the relative parameter
& = AL/L. The probability distribution for ¢ is normal, with a zero mean and the same standard deviation s,
for all members. One seeks to evaluate the parameters of initial stress distribution for all four types of
structural elements, shown on Fig. 4c.

On putting the lengths of vertical, horizontal and diagonal bars to be L, v/3L and 2L respectively, and E,
A as the Young’s modulus and cross-sectional areas of all bars, the lattice associate substructure, Fig. 4b,
provides the following values of the stiffness kernel function:

K(O,—l):K(O,l):—EL—A<O 0), K(—LO):K(I,O):—%(I O),

0 1 0 0
3 3 3 V3
1((—1,—1):1((1,1):—%(\/§ \1[) K(—I,I)ZK(L—l):—%(_\/§ . ) (52)
EA [409+4V3) 0
K(0,0)=m< 0 6()>'

The geometry of a cell comprised of the four typical members, Fig. 4c, implies the connection matrix,
along with the matrices of members’ lengths and cross-sectional areas, of the forms:

0 2 0 0 0 2 0 0 1 0 00 100 0
If-2 0 2 0 0 0 0 0 o Vv3oo o100
B=>1_-v3a -1 0 0o o ov3 1] L0 0 20 A=40 0 1 0
0 0 V3 -1 V31 0 0 0 0 02 000 1

(53)

Next, construct the displacement Green’s function according to Eq. (23):

4

1< ~ 2m ~ K:!
Gas(nm) =55 3= 3" Gaslpa)exp (5 (o am)). Gastpug) = { sl 20> 6

p=0 ¢=0
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500 simulations

(b)

~1- Monte-Carlo
——— theory

n-1, m+1 n, m+1 n+1, m+1
n-1, m n+l, m
n-1, mi1 n, mil n+l, m1
n, m+1 n+1, m+1
3
4
n,m n+l, m

3500 simulations

1 3 5 7 9 11 13 15
09+ 109
0.8 | horizontal {10.8
S
E 0.7 + 107
06| vertical Jos
05+ {05
(e S
1 3 5 7 9 11 13 15
N.M

5383

Fig. 4. X-braced planar grid (a); associate substructure (b), numbering of members within a typical cell (c). Probability density for the
horizontal member stress (d), £ = 2 x 10° N/mm?, s, = 0.0022. Dependence of standard deviations for member stresses on the lattice size (e).

Here, the zero harmonic 65,5(0, 0) of the Green’s function is trivial, because

Ks5(0,0) = > > K(n,m) =0

n=—1 m=-1

(55)
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for this structure, i.c. it has no eigenvalues other than zero. The Fourier image of the kernel function can be
sought as Eq. (24) and, by employing the symmetry K(—n, —m) = K(n, m) see (52), rearranged to give

ﬁsﬁs(PaQ)
= Z Z K(n,m)exp <—i2?7I (pn+qm)>
= —4(K(1,0)sin*(w,) +K(0,1)sin*(w,) + K(1,1)sin*(w, +w,) + K(1, = 1)sin*(w, — w,))
_E4 8+v/3sin’(w,) 4 sin®(w, +w,) + 9sin’(w, — w,) 3v/3sin(2w,) sin(2w,)
6L 3/3sin(2w,) sin(2w,) 3(8sin’(w,) 4 sin®(w, +w,) +sin’(w, —w,)) )’
(56)

where w, = npn/S, w, = nqn/5.

The required values of the stress Green’s function @ss(n,m), n =0,1,...,4, m=0,1,...,4, can then be
found using (41) and (53). Then we can use (42) to express the sought standard deviations for initial stress in
four typical members through the Young’s modulus and value s, only:

5o, . . 1 0.64531
5 1 0.78412
Se = | ¢ Pl = Z Z"’g,s(”a m) 1|~ Ess 0.74108 7
o3 n=0 m= '
5 0 m=0 1 0.74108

(the statistics appeared invariant with respect to the values L and 4). Here, parameter s, is taken outside the
radical sign, since it reads the same value for all element types in the present problem statement. Thus,
larger initial stresses are expected in horizontal bars, and smaller—in the vertical bars. Logically, stresses in
the left and right diagonal members show a similar distribution; this is determined by the mirror symmetry
of the lattice in relation to a medial line.

This result was verified with numerical Monte—Carlo simulations, where the lack of fit was modelled
through the use of El-Sheikh technique, Fig. 1. The bars’ lengths were taken as a random, normally dis-
tributed sample with standard deviation s, = 0.0022 for the relative lack of fit ¢ = AL/L; the Young’s
modulus was 200 kN/mm?. For a given sample, the nodal forces were evaluated as explained in Fig. 1, and
displacements—by solving the global stiffness matrix equation Kd = f with periodic (cyclic) boundary
conditions. The initial stress was found after calculating the strain (3), for the four typical members, Fig. 4c.
For each next sample of imperfections, the stress was found for the same set of bars, until the sought
statistics emerged. First, 500 simulations of this kind were accomplished to give Q = 500 random stresses
for a typical member, whose mean standard deviation was calculated conventionally as

1 & L ¢
He = é Z a(k)7 Se = ﬁ Z (oh) — lurr)z' (58)
k=1

k=1

The results obtained were very close to the theoretical predictions, and additional simulations further
verified convergence of the analytical and numerical values. This can be seen from Table 1, and also from
Fig. 4d, where the theoretical and numerical probability density functions are shown to converge with the
growth of Q.

Using the analytical arguments similar to (54)—(57), one can easily evaluate the statistics of stress for
other related lattices. Of particular interest is to investigate its behaviour with the change of lattice size
parameters N, M. Such a study was undertaken over the range N = M = 1,2,...,16; the results are pre-
sented graphically in Fig. 4¢. Remarkably, with the growth of N, M, the standard deviations do not tend to



E.G. Karpov et al. | International Journal of Solids and Structures 40 (2003) 5371-5388 5385

Table 1
Means and standard deviations for initial stress (N/mm?) in typical members
Vertical Horizontal Right diagonal Left diagonal
0 =500 15.04, 287.4 3.968, 343.1 -10.84, 322.0 -9.742, 330.5
Q = 3500 2.322, 284.1 5.875, 344 4 5.109, 327.2 —1.296, 324.94
Theory 0, 283.9 0, 345.0 0, 326.1 0, 326.1

zeros, in contrast to the case of elastic chain (50). The reason for that is the following: the chain structure
becomes statically determinate in the hypothetical infinite limit N — oo, when the right end reaction
vanishes. However, the X-braced grid remains indeterminate for the entire range of N, M, including the
infinite limit, due to the redundancy of its individual constituent blocks, for example, the single X-braced
rectangular cells shown Fig. 6a. Thus, with the growth of lattice sizes, the standard deviations for initial
member stresses asymptotically approach some finite non-trivial values that should be typical for all large
lattices, when the boundary effects diminish.

Example 3. Finally, investigate what changes to the obtained distributions can be caused by removing some
redundant elements from the lattice considered in Example 2. For instance, consider removal of the left
diagonal members, Fig. 5a. The associate substructure for the new lattice is shown in Fig. 5b, so that the
values of stiffness kernel function become

K<07—1)=K(071)=—%<8 ?) K(—1,0)=K(1,0):_%<é g)

EA( 3 V3
8L\V3 1

9+8v3 3V3
K(0,0) = 12L< 3V3 27 )

and the displacement Green’s functions simplifies to

K(-1,-1) =K(1,1) = - >a K(-1,1) =K(1,-1) =0, (59)

1 & ~ K:l(p,q), p+q>0,
Gss(n,m) _TSZZG 5. 9) eXp(—l—(Pn+qm)) Gs,s(P,Q):{OS"S(pq) p_q_o
p=0 q=0 ) p=q9=VY,
Kes(pq) = EA ( 8V/3sin*(w,) + 9sin®(w, 4+ w,) 3v/3sin*(w, 4+ w,)
RN 7 33 sin(w, + w,) 3(8sin’(w,) + sin?(w, +w,)) )
(60)

The connectivity matrix, matrices of members’ lengths and cross-section areas for the pattern of three
typical members, Fig. 5c, become

[0 20002 0 0 1 0 0 1 00
p:i—z 0 2000 0 0], L=L[0 V3 0], A=4(0 1 0]. (61)
-3 =1 0 0 0 0 V3 1 0 0 2 0 0 1

Expressions (60) and (61) provide one with all necessary information for calculating the values of stress
Green’s function (41). Employing them for (42), we obtain the following standard deviations for the initial
stress in typical elements:
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( d) 500 simulations 3500 simulations
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- — - theory 08
0.6
04 \
0.2] 52’ KN
-1 1 -1 05 0.5 1
1 3 5 7 9 11 13 15
0.9 + 4 0.9
0.8 |+ 40.8
S
E
0.7 - diagonal 407
06 horiz'ontal T T 408
05} vertical 105
(e) —
1 3 5 7 9 11 13 15
N, M

Fig. 5. Probability density for the horizontal member stress (d), £ = 2 x 10° N/mm?, s, = 0.0022, and behaviour of standard deviations
(e) after the left diagonal member removal (a—c).
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(a) (®)

Fig. 6. Redundant constituent units for the original X-braced grid (a), and after the left diagonal member removal (b); the edge bars are
formally split along to halve the cross-section areas.

1 0.51762

Sq, 4 4
S, = | 5o, | =5 > olnm)| 1| =Es| 062212 |. (62)
S, =0 m=0 1 0.66409

Here, it was similarly assumed that the standard deviation for the relative lack of fit, s., is the same for all
members.

In accordance with (62), the probability distributions for initial member stresses are narrower, when
compared with the corresponding results for the X-braced lattice (57). The analytical data (62) were sim-
ilarly verified with a series of numerical Monte—Carlo simulations. The theoretical and numerical results are
in good agreement. Their convergence with the growth of number of calculation is depicted in Fig. 5d for
the horizontal members.

Although the single rectangular cell with one diagonal is a non-redundant structure, the behaviour of the
standard deviations with the change of N, M, Fig. Se, is similar to the previous case shown in Fig. 4c. When
N,M — oo, these parameters asymptotically tend to some fixed finite values, so that no decay to the zero
level, as in (50), appears. We can attribute this phenomenon to the presence of a larger redundant con-
stituent unit for this structure, depicted in Fig. 6b.

5. Concluding remarks

In this paper, an analytical approach for studying initial member stress in regular lattice structures with
geometrical imperfections has been presented. Solutions to benchmark problems have been verified through
direct Monte—Carlo simulation. The study of particular example structures indicates that the initial member
stress can be diminished substantially with the members redundancy decrease. However, the effect will
reveal itself in all cases, when the lattice features a redundant constituent block, even if the latter is
comprised of several typical cells.

The periodic boundary model considered provides a reliable approximation for large realistic problems.
Importantly, it yields higher values for the standard deviations in studying smaller lattices, compared with
those for N, M — oo (Figs. 4e and 5e). Hence the use of this approximation will not lead to underestimation
of this dangerous phenomenon in realistic finite structures, and in the analysis of edge clamped lattices it
will provide one with almost exact solutions. Besides, the obvious computational effectiveness of the ap-
proach, compared with numerical techniques is another important advantage. For most problems the cost
of analytical evaluation of the statistical parameters with the use of (40) or (42) is not more than the cost of
one random lattice simulation. This implies savings in CPU effort up to 10°-10* times, compared with
numerical Monte—Carlo simulations, when reliable estimates are sought.
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The asymptotical behaviour of the standard deviations in the limit N, M — oo is particularly remarkable,
and its further analysis is planned. The approach can be also modified for studying residual stress in dis-
ordered crystal lattices.
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