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Abstract

This paper is concerned with probabilistic analysis of initial member stress in geometrically imperfect regular lattice

structures with periodic boundary conditions. Spatial invariance of the corresponding statistical parameters is shown to

arise on the Born-von K�aarm�aan domains. This allows analytical treatment of the problem, where the parameters of stress

distribution are obtained in a closed form. Several benchmark problems with beam- and plate-like lattices are con-

sidered, and the results are verified by the direct Monte–Carlo simulations. Behaviour of the standard deviation as a

function of lattice repetitive cell number is investigated, and dependence on the lattice structural redundancy is pointed

out.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The presence of geometrically imperfect members in a lattice structure is almost inevitable in practice. In
terms of the static performance, the most undesirable is member length lack of fit due to manufacturer�s
tolerance or temperature variations. After assembling a statically indeterminate structure with imperfect

member lengths, there can arise considerable bar tensions even before applying the external loading. As

investigated by Schmidt et al. (1976, 1983), these unknown stresses may even cause the premature buckling

of a particular member; this may further lead to overall progressive collapse of the entire assembly at loads

well below its theoretical critical design load. Classical structural theory can mislead the designer into

assuming that lattice redundancy should guarantee safety and higher performance, since the structure

would remain stiff when some of its redundant members failed. Though with redundancy, the degree by
which individual members are critical to structural integrity reduces, Schmidt et al. (1976) have shown that

a higher degree of statical indeterminacy usually imposes larger initial stresses, which is more likely to
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trigger failure, and it may have no effect on stopping the progressive structural collapse. The sudden col-

lapse of Hartford Coliseum, Connecticut, USA, space roof structure in 1978 under one-half of its design

load is known to have been caused by these effects (Smith and Epstein, 1980; Thornton and Lew, 1984).

Thus it is very important to take into account initial bar tensions, even though their calculations may
require considerable effort. In the earlier works by Schmidt et al. (1976, 1983) and also El-Sheikh (1995,

1997), the authors employed a deterministic approach to investigate the changes in structural performance

due to given lack of fit of particular members at known spatial locations. However, with the hundreds

of members and joints in realistic lattices, a statistical description of the initial stress problem would be

obviously preferable.

The probabilistic approach to the statics of regular lattices remains relatively undeveloped, in contrast to

the area of dynamics, where much greater contributions have been made (see, for example, Li and Bena-

roya, 1992; Langley, 1994; Lin, 1996). A probable reason is the need for involved multi-dimensional dis-
tributions to yield the sought probability for the member stress, as depending on a variety of parameters:

the members� lengths variance, its positioning within a representative substructure and, what is most

crucial, the global spatial location of such a substructure. Due to the complexity of such a probability

distribution, the numerical Monte–Carlo simulation has been considered as a better method of its evalu-

ation, rather than analytical study. Affan and Calladine (1989) accomplished such an analysis to obtain

approximate distributions for the initial bar tensions in a two-layered space grid, due to given standard

deviations in length, from a series of 200 computer simulations.

Since Monte–Carlo techniques are known to be extremely expensive tools for probabilistic structural
analysis, a cheap semi-analytical approach is presented in this paper for problems with periodic (Born-von

K�aarm�aan) boundary conditions. Due to the cyclic symmetry of Born-von K�aarm�aan domains, the probability

distributions for initial stress appear to be spatially invariant, i.e. independent of the particular locations of

typical members in the structure. This drastically simplifies the analysis of large structures and provides the

statistical parameters of these distributions in a straightforward way, in terms of the lattice Green�s
functions (the Green�s functions� definitions are given in Sections 2 and 3).
2. Problem statement and background

Consider the following problem definition: there are given deterministic quantities A, E and L (respec-

tively, the cross-section area, Young�s modulus and perfect length) of bar members in a regular pin-jointed

lattice. Actual member length, however, does not match the perfect geometry, and there is given a prob-

ability distribution (same for all members) for the relative lack of fit,
e ¼ DL=L: ð1Þ
DL is the difference between the actual and perfect lengths. The distribution for e is normal, defined by

two statistical parameters: mean value le (logically, le ¼ 0) and standard deviation se (this notation is used

instead of the conventional r to avoid confusion with member stresses). One seeks to express analytically
the parameters of probability distributions for the initial stresses in lattice members through A, E, L and se.
The boundary conditions are periodic, i.e. Born-von K�aarm�aan (for detailed description of these boundary

conditions, see, for example Keane and Price (1989), and Karpov et al. (2002)).
2.1. Model for geometric imperfections

For modelling geometric imperfections, a probabilistic extension of the method by El-Sheikh (1995,
1997) is accomplished in this paper. Within the approach, the force
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P ¼ EA
DL
L

¼ EAe; ð2Þ
required to stretch or shorten a disconnected imperfect member for fitting into the ideal geometry is first

calculated. Then the self-equilibrated pair of nodal loads P and �P are applied along the member�s lon-
gitudinal direction to the joints of the ideal lattice that are connected by this member (Fig. 1). Finally, the

strain in the disordered lattice is found as
eðdÞ ¼ eðiÞ � e; ð3Þ

where eðiÞ is the strain of this member in the ideal structure under additional loads P .

Remarkably, this method reduces the analysis of an imperfect lattice (free of external loads) to solving

the loaded ideal structure. As was shown by Karpov et al. (2002), the latter problem can be most efficiently

treated with techniques based on the discrete Fourier transform (DFT). We briefly outline these techniques

in Section 2.2, and then combine them with El-Sheikh�s ideas (2) and (3) in Section 3 to obtain an effective

probabilistic approach.

2.2. Discrete Fourier transform solutions for regular lattices

Imposing periodic (Born-von K�aarm�aan) boundary conditions is equivalent to formal merging of

the opposite edges of the lattice; this eliminates the difference between the boundary and internal nodal

locations. These conditions, therefore, emulate cyclic symmetry on periodic domains. The beam- or plate-

like lattices become topological rings or toruses, and their stiffness matrices respectively acquire the cyclic

or double-cyclic forms:
K ¼

k2 k3 0 k1

k1 k2 k3 0

0 k1 k2 k3

k3 0 k1 k2

0BBB@
1CCCA

K ¼

b2 b3 0 b1

b1 b2 b3 0

0 b1 b2 b3

b3 0 b1 b2

c2 c3 0 c1

c1 c2 c3 0

0 c1 c2 c3

c3 0 c1 c2

0

a2 a3 0 a1

a1 a2 a3 0

0 a1 a2 a3

a3 0 a1 a2

a2 a3 0 a1

a1 a2 a3 0

0 a1 a2 a3

a3 0 a1 a2

b2 b3 0 b1

b1 b2 b3 0

0 b1 b2 b3

b3 0 b1 b2

c2 c3 0 c1

c1 c2 c3 0

0 c1 c2 c3

c3 0 c1 c2

0

0

a2 a3 0 a1

a1 a2 a3 0

0 a1 a2 a3

a3 0 a1 a2

b2 b3 0 b1

b1 b2 b3 0

0 b1 b2 b3

b3 0 b1 b2

c2 c3 0 c1

c1 c2 c3 0

0 c1 c2 c3

c3 0 c1 c2

c2 c3 0 c1

c1 c2 c3 0

0 c1 c2 c3

c3 0 c1 c2

0

a2 a3 0 a1

a1 a2 a3 0

0 a1 a2 a3

a3 0 a1 a2

b2 b3 0 b1

b1 b2 b3 0

0 b1 b2 b3

b3 0 b1 b2

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð4Þ
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Fig. 1. Modelling of imperfect members by El-Sheikh (1995): short member (a), long member (b).
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Generally, the size of blocks k, a, b and c is R� R, where R is the number of degrees of freedom for a
typical repeating node or set of nodes in the structure. The first matrix, as well as each superblock of the

second one (confined by the dashed lines), consists of N � N blocks, N is the number of repetitive cells in

the lattice along the horizontal direction. There are totally M �M superblocks in the second matrix, where

M is the number of cells along the second spatial direction. For example, for the lattice shown in Fig. 4a,

R ¼ 2 and N ¼ M ¼ 5. For the chain of elastic bars, Fig. 3, whose nodes are confined to move along the x-
axis only, we have R ¼ 1 and M ¼ 1. Assuming, for example N ¼ 4, and utilising the individual member�s
stiffness,
KðmÞ ¼ EA
L

1 �1

�1 1

� �
; ð5Þ
one obtains the cyclic global matrix, as a particular case of the more general form (4):
K ¼ EA
L

2 �1 0 �1

�1 2 �1 0

0 �1 2 �1

�1 0 �1 2

0BB@
1CCA: ð6Þ
These example structures are discussed in more details in Section 4.

Noteworthy, the maximum number of distinct blocks of each type k, a, b or c, as well as the number of

the distinct superblocks in (4) is three. Thus, the stiffness matrix of a regular beam or plate lattice is
comprised respectively of not more than three or nine repeating R� R blocks, when periodic boundary

conditions are applied. Note also that any column or row of the cyclic forms (4) contains all the distinct

blocks available. Physically, the diagonal block shows stiffness at a current node with all other nodes being

fixed, and the remaining blocks describe the available stiffness couplings between the current and neigh-

bouring nodes.

Both the single- and multi-cyclic systems can be effectively solved by the approach proposed by Karpov

et al. (2002). Within this approach, first the typical nodal location is defined as a minimum set of nodes able

to generate the rest of structural joints, when translated along one (beam lattices) or two (plate lattices)
spatial directions. Next, the associate substructure is introduced to include all the structural elements in-

teracting with the nodes of one typical location (examples are shown on Figs. 2, 4b and 5b). Importantly,

the associate substructure is the minimum structural domain, whose stiffness matrix contains all the distinct

blocks available for a global matrix (4).



 

Fig. 2. Substructuring of a beam-like lattice.
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Introduce the column-vectors of the generalized loads and displacements f and u, as related to the de-

grees of freedom of only one typical nodal location. Then, constructing the associate substructure stiffness
matrix, one logically finds the blocks for (4) located along the middle horizontal and vertical lines of the

matrix:
� � � k3 � � �
k1 k2 k3
� � � k1 � � �

0@ 1A uðn� 1Þ
uðnÞ

uðnþ 1Þ

0@ 1A ¼
fðn� 1Þ
fðnÞ

fðnþ 1Þ

0@ 1A ð7Þ
for a one-dimensional beam-like structure, or
c3
c2

. . . c1 . . .
b3

a1 a2 a3 b1 b2 b3 c1 c2 c3
b1

. . . a3 . . .
a2
a1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

uðn� 1;m� 1Þ
uðn;m� 1Þ

uðnþ 1;m� 1Þ
uðn� 1;mÞ
uðn;mÞ

uðnþ 1;mÞ
uðn� 1;mþ 1Þ
uðn;mþ 1Þ

uðnþ 1;mþ 1Þ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
¼

fðn� 1;m� 1Þ
fðn;m� 1Þ

fðnþ 1;m� 1Þ
fðn� 1;mÞ
fðn;mÞ

fðnþ 1;mÞ
fðn� 1;mþ 1Þ
fðn;mþ 1Þ

fðnþ 1;mþ 1Þ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð8Þ
for plate-like lattices.

Next consider the beam- and plate-like cases separately. For the purposes of further discussion, intro-

duce the following notations for the matrix blocks of (7):
Kð1Þ ¼ k1; Kð0Þ ¼ k2; Kð�1Þ ¼ k3: ð9Þ
According to (7) and (9), the external loads applied to any nth nodal location will be in equilibrium with

structural reaction, if
Kð1Þuðn� 1Þ þ Kð0ÞuðnÞ þ Kð�1Þuðnþ 1Þ ¼ fðnÞ; n ¼ 0; 1; . . . ;N � 1: ð10Þ
This second order finite difference scheme represents the governing equation of static equilibrium of a

repetitive beam-like lattice on an N -periodic domain. It can be reduced to the discrete convolution form
Xnþ1

n0¼n�1

Kðn� n0Þuðn0Þ ¼ fðnÞ; n ¼ 0; 1; . . . ;N � 1; ð11Þ
where KðnÞ acquires the sense of a stiffness kernel function, whose values are available from (7); uðnÞ is the
sought displacement function, and function fðnÞ describes the external loads distribution.

Using the formal N -periodic extension for the displacement, load and kernel functions,
uðnþ vNÞ ¼ uðnÞ; fðnþ vNÞ ¼ fðnÞ; Kðnþ vNÞ ¼ KðnÞ; v ¼ 0;	1;	2; . . . ; ð12Þ
and applying the finite discrete Fourier transform to both sides of equation (11)
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XN�1

n¼0

Xnþ1

n0¼n�1

Kðn� n0Þuðn0Þ exp


� i2pp

n
N

�
¼
XN�1

n¼0

fðnÞ exp


� i2pp

n
N

�
; ð13Þ
one obtains a set of N decoupled R� R matrix equations in the Fourier domain:
eKKðpÞ~ddðpÞ ¼ ~ffðpÞ; p ¼ 0; 1; . . . ;N � 1: ð14Þ

Here, the Fourier images of functions (12) read
~uuðpÞ ¼
XN�1

n¼0

dðnÞ exp �i2pp
n
N


 �
;

~ffðpÞ ¼
XN�1

n¼0

fðnÞ exp �i2pp
n
N


 �
;

eKKðpÞ ¼ X1
n¼�1

KðnÞ exp �i2pp
n
N


 �
:

ð15Þ
Further inversion of matrix eKKðpÞ, which can be often accomplished symbolically, and application of the

inverse DFT yields the sought n-domain solution:
uðnÞ ¼ 1

N

XN�1

p¼0

eKK�1ðpÞ~ffðpÞ exp i2pp
n
N


 �
: ð16Þ
Substitute the Fourier image ~ffðpÞ into (16), employing n ¼ n0 for (15) to distinguish the summation index
there from the argument of function uðnÞ, and rearrange to give
uðnÞ ¼ 1

N

XN�1

p¼0

eKK�1ðpÞ
XN�1

n0¼0

fðn0Þ exp �i2pp
n0

N

� �
exp i2pp

n
N


 �
¼
XN�1

n0¼0

GN ðn� n0Þfðn0Þ; ð17Þ

GN ðnÞ ¼
1

N

XN
p¼0

eKK�1ðpÞ exp i2pp
n
N


 �
: ð18Þ
In fact, matrix eKKðpÞ appears to be singular for p ¼ 0, therefore equation eKKð0Þ~ddð0Þ ¼ ~ffð0Þ is solved

separately to give the following correction to (18)
GN ðnÞ ¼
1

N

XN�1

p¼0

eGGN ðpÞ exp i2pp
n
N


 �
; eGGN ðpÞ ¼

eKK�1ðpÞ; p > 0;
WK�1Wþ; p ¼ 0:



ð19Þ
Here, the diagonal matrix K is comprised of non-zero eigenvalues of eKKð0Þ, and the columns of rect-

angular matrix W are the corresponding eigenvectors; Wþ is the pseudoinverse of W. In case of a zero
matrix eKKð0Þ, one assumes eGGN ð0Þ ¼ 0. Matrix function (19) is the displacement Green’s function for Eq. (11)

on the cyclic N -periodic domain. The convolution sum (17) over the Green�s and the load functions gives a

particular non-homogeneous solution to (11) to describe the lattice deflections precise up to a rigid-body

motion.

The physical interpretation of the displacement Green�s function, according to (17), is that the rth column

of GN ðn� n0Þ represents deflections of the nth nodal set caused by the rth component of a unit load vector

applied to the n0th nodal location of a repetitive framework, which is formally closed to form the N -periodic

ring. Obviously, the Green�s function is defined by the member stiffnesses and lattice geometry only.
The two-dimensional (plate-like) extension of the above approach can be accomplished by denoting the

blocks of (8) as
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Kð1; 1Þ ¼ a1; Kð0; 1Þ ¼ a2; Kð�1; 1Þ ¼ a3;

Kð1; 0Þ ¼ b1; Kð0; 0Þ ¼ b2; Kð�1; 0Þ ¼ b3;

Kð1;�1Þ ¼ c1; Kð0;�1Þ ¼ c2; Kð�1;�1Þ ¼ c3;

ð20Þ
and writing the governing double convolution form:
Xnþ1

n0¼n�1

Xmþ1

m0¼m�1

Kðn� n0;m� m0Þuðn0;m0Þ ¼ fðn;mÞ; n ¼ 1; 2; . . . ;N � 1; m ¼ 1; 2; . . . ;M � 1: ð21Þ
Solution to (21) can be similarly obtained in terms of the two-dimensional ðN ;MÞ-periodic Green�s
function with the use of double discrete Fourier transform:
uðn;mÞ ¼
XN�1

n0¼0

XM�1

m0¼0

GN ;Mðn� n0;m� m0Þfðn0;m0Þ; ð22Þ

GN ;Mðn;mÞ ¼
1

NM

XN�1

p¼0

XM�1

q¼0

eGGN ;Mðp; qÞ exp i2p p
n
N




þ q

m
M

��
; ð23Þ

eGGN ;Mðp; qÞ ¼
eKK�1ðp; qÞ; p þ q > 0;

WK�1Wþ; p ¼ q ¼ 0;

(

eKKðp; qÞ ¼ X1
n¼�1

X1
m¼�1

Kðn;mÞ exp �i2p p
n
N




þ q

m
M

��
: ð24Þ
Here, matrices K and W of (24) are constructed from the non-zero eigenvalues and the corresponding

eigenvectors of eKKð0; 0Þ; if eKKð0; 0Þ ¼ 0, then eGGN ;Mð0; 0Þ ¼ 0.
3. Spatial invariance of statistics

3.1. Beam-like problem

Return to the original problem definition (the first paragraph of Section 2), and consider first the case of

beam-like lattices. Isolate mentally a minimum set of typical bar members the typical cell (an example is

shown on Fig. 2), numbered with a single spatial parameter n, and introduce the following subsidiary
objects, which depend on the value n:
rðnÞ ¼
r1ðnÞ
r2ðnÞ
. . .

0B@
1CA; eðnÞ ¼

e1ðnÞ
e2ðnÞ
. . .

0B@
1CA; eðiÞðnÞ ¼

eðiÞ1 ðnÞ
eðiÞ2 ðnÞ
. . .

0B@
1CA;

LðnÞ 
 L ¼
L1 0 . . .

0 L2 . . .

. . . . . . . . .

0B@
1CA; AðnÞ 
 A ¼

A1 0 . . .

0 A2 . . .

. . . . . . . . .

0B@
1CA; n ¼ 0; 1; . . . ;N � 1:

ð25Þ
Here, rkðnÞ, ekðnÞ, eðiÞk ðnÞ, Lk, Ak are the stress, relative lack of fit, strain in the ideal lattice, perfect length

and cross-sectional area of the kth member in the nth typical cell, respectively. The Young�s modulus is
supposed to be the same throughout the lattice.
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Assume also that there is known the connectivity matrix b for the typical cell with ideal geometry. This

matrix relates member elongations and nodal displacements, therefore
LeðiÞðnÞ ¼ b
dðnÞ

dðnþ 1Þ

� �
ð26Þ
for any n within the perfect lattice.

Further consider a particular realization of the random lack of fit eðnÞ for all components of this vector

and for all n ¼ 0; 1; . . . ;N � 1. Then, the ideal lattice is to be subjected to the corresponding nodal loads

that can be written, for this realization, in terms of the above notations as
fðnÞ
fðnþ 1Þ

� �
¼ EaAeðnÞ; ð27Þ
where a is the equilibrium matrix for the typical cell, relating the nodal and member forces (2). Note, the

equilibrium and connectivity matrices are related as
aT ¼ b: ð28Þ
According to (17), the displacements for (26) caused by the loads (27) are
dðnÞ ¼
XN�1

n0¼0

GN ðnð � n0Þfðn0Þ þGN ðn� 1� n0Þfðn0 þ 1ÞÞ;

dðnþ 1Þ ¼
XN�1

n0¼0

GN ðnð þ 1� n0Þfðn0Þ þGN ðn� n0Þfðn0 þ 1ÞÞ:
ð29Þ
By rearranging (29) to a matrix form and subsequently employing (27) and (28), we obtain
dðnÞ
dðnþ 1Þ

� �
¼
XN�1

n0¼0

GN ðn� n0Þ GNðn� 1� n0Þ
GN ðnþ 1� n0Þ GN ðn� n0Þ

� �
fðn0Þ

fðn0 þ 1Þ

� �

¼ E
XN�1

n0¼0

GN ðn� n0Þ GN ðn� 1� n0Þ
GN ðnþ 1� n0Þ GN ðn� n0Þ

� �
bTAeðn0Þ: ð30Þ
Thus, the strains eðiÞðnÞ in an ideal lattice can be expressed through the displacement Green�s function,
according to (26) and (30):
eðiÞðnÞ ¼ L�1b
dðnÞ

dðnþ 1Þ

� �
¼ EL�1b

XN�1

n0¼0

GN ðn� n0Þ GN ðn� 1� n0Þ
GN ðnþ 1� n0Þ GN ðn� n0Þ

� �
bTAeðn0Þ: ð31Þ
Due to (3) and (31), the vector of stresses for disordered lattice can be written in terms of the lack of fit as
rðnÞ ¼ E eðiÞðnÞ
�

� eðnÞÞ ¼
XN�1

n0¼0

xN ðn� n0Þeðn0Þ; ð32Þ
where xNðn� n0Þ is the matrix function:
xN ðn� n0Þ ¼ E2L�1b
GN ðn� n0Þ GN ðn� 1� n0Þ

GN ðnþ 1� n0Þ GNðn� n0Þ

� �
bTA� Edn;n0I; ð33Þ
(dn;n0 is the Kronecker delta and I is the identity 2R� 2R matrix). This function represents another class of

periodic Green�s functions: namely, the rth column of xN ðn� n0Þ represents member stresses in the nth
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typical cell, caused by a unit relative lack of fit of the rth member in some distant (n0)th cell, on a cyclic N -

periodic domain.

As follows from (23), each member stress is essentially given by a linear superposition of the lack of fits

all around the lattice, where the components of matrix xNðn� n0Þ serve as the coefficients for that super-
position. At the same time, when a random variable q is a linear combination of several other random

variables xðnÞ with coefficients aðnÞ,
q ¼
X
n

aðnÞxðnÞ; n ¼ 0; 1; . . . ; ð34Þ
and all xðnÞ are independent variables, statistical parameters of the distributions for q and xðnÞ are simply

related:
lq ¼
X
n

aðnÞlxðnÞ; s2q ¼
X
n

a2ðnÞs2xðnÞ: ð35Þ
Here, lq, sq are the mean and standard deviation for q, and lxðnÞ, sxðnÞ are means and standard devi-

ations for xðnÞ. Introducing the vectors of means and standard deviation for the member stresses and lacks
of fit in the nth typical cell,
lrðnÞ ¼ lr1ðnÞ lr2ðnÞ . . .
� �T

; srðnÞ ¼ sr1ðnÞ sr2ðnÞ . . .ð ÞT;
leðnÞ ¼ le1ðnÞ le2ðnÞ . . .

� �T
; seðnÞ ¼ se1ðnÞ se2ðnÞ . . .ð ÞT;

ð36Þ
one can write, according to (32) and (35),
lrðnÞ ¼ 0; srðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n0¼0

x2
N ðn� n0Þs2e ðn0Þ

vuut ð37Þ
(the second power and radical notations, here and below in this section, imply taking the corresponding

operations over each component of the matrix xN ðn� n0Þ, vector seðnÞ, and the sub-radical vector res-

pectively). This fully describes the normal distributions for the member stresses throughout the lattice.

It is logical to assume that the standard deviation for the lacks of fit, se does not depend on the value n:
lrðnÞ ¼ 0; srðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n0¼0

x2
N ðn� n0Þs2e

vuut : ð38Þ
This situation relates to the case of an absence of a strategy to put, for example, better-fit members in some
particular areas of the lattice. It is important to note that x2

N ðn� n0Þ, similar GNðn� n0Þ and xN ðn� n0Þ, is
an N -periodic function of its argument, therefore,
XN�1

n0¼0

x2
N ðn� n0Þ ¼

XN�1

n0¼0

x2
N ð�n0Þ ¼

XN�1

n0¼0

x2
N ðn0Þ ð39Þ
for any integer n. Thus, we crucially obtain spatial invariance of the sought statistics on the cyclic domains:
lr ¼ 0; sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼0

x2
N ðnÞs2e

vuut : ð40Þ
In practice, this implies that within the periodic Born-von K�aarm�aan model, the standard deviations have to
be calculated for a small number of members in one typical cell only, instead of possibly thousands of bars

in an entire lattice.
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3.2. Plate-like problem

For the plate-like case, the ðn;mÞth typical cell is normally confined between four nodal locations ðn;mÞ,
ðnþ 1;mÞ, ðn;mþ 1Þ and ðnþ 1;mþ 1Þ––see Figs. 4c and 5c. Then, using arguments similar to (26)–(33)),
we obtain the two-dimensional Green�s function for the initial stress in the form:
xN ;Mðn;mÞ

¼ E2L�1b �

GN ;Mðn;mÞ GN ;Mðn� 1;mÞ GN ;Mðn;m� 1Þ GN ;Mðn� 1;m� 1Þ
GN ;Mðnþ 1;mÞ GN ;Mðn;mÞ GN ;Mðnþ 1;m� 1Þ GN ;Mðn;m� 1Þ
GN ;Mðn;mþ 1Þ GN ;Mðn� 1;mþ 1Þ GN ;Mðn;mÞ GN ;Mðn� 1;mÞ

GN ;Mðnþ 1;mþ 1Þ GN ;Mðn;mþ 1Þ GN ;Mðnþ 1;mÞ GN ;Mðn;mÞ

0BBB@
1CCCA

� bTA� Edn;0dm;0I: ð41Þ
Here, b;L and A are similarly the connectivity matrix, diagonal matrices of perfect member lengths and

cross-section areas for the bars of a typical cell, and GN ;Mðn;mÞ is a two-dimensional displacement Green�s
function (23).

Finally, the statistical parameters of distributions for the initial member stresses on a double cyclic

domain are
lr ¼ 0; sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼0

XM�1

m¼0

x2
N ;Mðn;mÞs2e

vuut ; ð42Þ
where the components of vectors lr, sr are means and standard deviations for the stress in typical members

at arbitrary spatial locations, and se is the given standard deviation for the relative lack of fit of such

members.
4. Illustrative examples

Example 1. Consider the chain of an arbitrary number N of elastic elements, supported as shown in Fig. 3.

Assume the structure is free of external loads. The distance between the left and right support is deter-

ministic, and equal to NL, where L is the perfect length of the elements. However, the members do not

match this perfect length in a random way, due to temperature gradients or manufacture�s tolerance. The
relative lack of fit e of the disassembled elements is given by the standard deviation se, and one seeks to find

the distribution for the initial stresses after assembling the structure.

This type of fixtures is an example of Born-von K�aarm�aan boundary conditions. They assure the same

(trivial) boundary displacements, and the zero resultant of end support reactions. Thus, the structure is a
topological ring (with nodes n ¼ 0 and n ¼ N formally merged), and the approach presented in Section 3.1

will yield an analytically exact solution to this problem. The values of the stiffness operator�s kernel

function give, for this lattice,
Kð�1Þ ¼ Kð1Þ ¼ �EA
L

; Kð0Þ ¼ 2
EA
L

: ð43Þ
Fig. 3. Chain of N elastic elements.
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The N -periodic displacement Green�s function can be then constructed according to Eq. (19). The

Fourier image eKKN ðpÞ is here the scalar quantity,
eKKN ðpÞ ¼
EA
L

� exp �i2pp
n
N


 �
þ 2� exp i2pp

n
N


 �
 �
¼ 4EA

L
sin2 pp

N


 �
; ð44Þ
so that we obtain
GN ðnÞ ¼
1

N

XN�1

p¼1

eKK�1
N ðpÞ exp i2pp

n
N


 �
¼ L

4EAN

XN�1

p¼1

csc2
pp
N


 �
exp i2pp

n
N


 �
: ð45Þ
The typical cell for this lattice is represented by a single member, for whom the connection matrix ac-

quires the form
b ¼ �1 1ð Þ: ð46Þ
Utilising (45) and (46), construct the initial stress Green�s function, according to (33), employing also
L 
 L and A 
 A,
xN ðnÞ ¼
E2A
L

b
GNðnÞ GNðn� 1Þ

GN ðnþ 1Þ GNðnÞ

� �
bT � Edn;0

¼ E
4N

�
XN�1

p¼1

csc2
pp
N


 �
exp i2pp

n� 1

N

� �
þ 2

XN�1

p¼1

csc2
pp
N


 �
exp i2pp

n
N


 � 

�
XN�1

p¼1

csc2
pp
N


 �
exp i2pp

nþ 1

N

� �!
� Edn;0: ð47Þ
This can be simplified as the following:
xN ðnÞ ¼
E
4N

XN�1

p¼1

csc2
pp
N


 �
� exp i2pp

n� 1

N

� ��
þ 2 exp i2pp

n
N


 �
� exp i2pp

nþ 1

N

� ��
� Edn;0

¼ E
N

XN�1

p¼1

csc2
pp
N


 �
sin2 pp

N


 �
exp i2pp

n
N


 �
� Edn;0 ¼

E
N

XN�1

p¼1

exp i2pp
n
N


 �
� Edn;0: ð48Þ
Add and subtract the term E=N to obtain the entire period summation in (48), and to further simplify as
xN ðnÞ ¼ E
1

N

XN�1

p¼0

exp i2pp
n
N


 � 
� 1

N
� dn;0

!
¼ E dn;0 �

1

N
� dn;0

� �
¼ � E

N
: ð49Þ
Importantly, the stress Green�s function (49) reads a constant quantity for all n. This physically implies

that the initial member stress does not depend on the distance from the element where it is measured to the
element, whose lack of fit causes this stress. In other words, whatever particular (deterministic) lacks of fit

are imposed, the value of the corresponding initial stress will be the same throughout the lattice.

Finally, the sought standard deviation can be found according to (40):
sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼0

x2
N ðnÞs2e

vuut ¼ se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼0

E2

N 2

vuut ¼ se

ffiffiffiffiffi
E2

N

r
¼ Eseffiffiffiffi

N
p : ð50Þ
The distribution for stresses will logically become narrower when the total number of chain elements is

growing. For an infinite chain, N ! 1, any finite lack of fit produces zero initial member stress.
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Noteworthy, the same result can be also obtained from elementary arguments. Indeed, if the sequence

eðnÞ ¼ DLðnÞ=L, n ¼ 0; 1; . . . ;N � 1 gives a particular realization for the members� lacks of fit, the initial

stress can be written for a chain of N elements, as
r ¼ E
N

XN�1

n¼0

eðnÞ: ð51Þ
Here, we initially presumed its invariance throughout the structure, due to the specified means of sup-

port. Since all eðnÞ are independent random values with the same standard deviation se, formulas (35) and

(51) can be directly used to give sr as (50). This lends support to the validity of the present approach. For

more complicated structures, with a varying stress Green�s function, such elementary arguments cannot be
normally found. Then the sums of (40) or (42) have to be evaluated directly for particular material

properties and values N , M , and if required, the results can be verified by Monte–Carlo simulations, as in

the next examples.

Example 2. Assume there are applied cyclic boundary conditions on the X-braced planar grid depicted in

Fig. 4, there exist random imperfections of the members� ideal lengths described by the relative parameter

e ¼ DL=L. The probability distribution for e is normal, with a zero mean and the same standard deviation se
for all members. One seeks to evaluate the parameters of initial stress distribution for all four types of
structural elements, shown on Fig. 4c.

On putting the lengths of vertical, horizontal and diagonal bars to be L,
ffiffiffi
3

p
L and 2L respectively, and E,

A as the Young�s modulus and cross-sectional areas of all bars, the lattice associate substructure, Fig. 4b,

provides the following values of the stiffness kernel function:
Kð0;�1Þ ¼ Kð0; 1Þ ¼ �EA
L

0 0

0 1

 !
; Kð�1; 0Þ ¼ Kð1; 0Þ ¼ � EAffiffiffi

3
p

L

1 0

0 0

 !
;

Kð�1;�1Þ ¼ Kð1; 1Þ ¼ �EA
8L

3
ffiffiffi
3

pffiffiffi
3

p
1

 !
; Kð�1; 1Þ ¼ Kð1;�1Þ ¼ �EA

8L

3 �
ffiffiffi
3

p

�
ffiffiffi
3

p
1

 !
;

Kð0; 0Þ ¼ EA
24L

4ð9þ 4
ffiffiffi
3

p
Þ 0

0 60

 !
:

ð52Þ
The geometry of a cell comprised of the four typical members, Fig. 4c, implies the connection matrix,

along with the matrices of members� lengths and cross-sectional areas, of the forms:
b ¼ 1

2

0 �2 0 0 0 2 0 0
�2 0 2 0 0 0 0 0

�
ffiffiffi
3

p
�1 0 0 0 0

ffiffiffi
3

p
1

0 0
ffiffiffi
3

p
�1 �

ffiffiffi
3

p
1 0 0

0BB@
1CCA; L ¼ L

1 0 0 0
0

ffiffiffi
3

p
0 0

0 0 2 0

0 0 0 2

0BB@
1CCA; A ¼ A

1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA:

ð53Þ
Next, construct the displacement Green�s function according to Eq. (23):
G5;5ðn;mÞ ¼
1

25

X4
p¼0

X4
q¼0

eGG5;5ðp; qÞ exp �i
2p
5
ðpnþ qmÞ

� �
; eGG5;5ðp; qÞ ¼

eKK�1
5;5ðp; qÞ; p þ q > 0;

0; p ¼ q ¼ 0:



ð54Þ
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Fig. 4. X-braced planar grid (a); associate substructure (b), numbering of members within a typical cell (c). Probability density for the

horizontal member stress (d), E ¼ 2� 105 N/mm2, se ¼ 0:0022. Dependence of standard deviations formember stresses on the lattice size (e).
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Here, the zero harmonic eGG5;5ð0; 0Þ of the Green�s function is trivial, because
eKK5;5ð0; 0Þ ¼
X1
n¼�1

X1
m¼�1

Kðn;mÞ ¼ 0 ð55Þ
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for this structure, i.e. it has no eigenvalues other than zero. The Fourier image of the kernel function can be

sought as Eq. (24) and, by employing the symmetry Kð�n;�mÞ ¼ Kðn;mÞ see (52), rearranged to give
eKK5;5ðp;qÞ

¼
X1
n¼�1

X1
m¼�1

Kðn;mÞexp �i
2p
5
ðpnþqmÞ

� �
¼�4 Kð1;0Þsin2ðwpÞ

�
þKð0;1Þsin2ðwqÞþKð1;1Þsin2ðwp þwqÞþKð1;�1Þsin2ðwp �wqÞ

�
¼ EA

6L

8
ffiffiffi
3

p
sin2ðwpÞþ sin2ðwp þwqÞþ9sin2ðwp �wqÞ 3

ffiffiffi
3

p
sinð2wpÞsinð2wqÞ

3
ffiffiffi
3

p
sinð2wpÞsinð2wqÞ 3ð8sin2ðwqÞþ sin2ðwp þwqÞþ sin2ðwp �wqÞÞ

 !
;

ð56Þ
where wp ¼ ppn=5, wq ¼ pqn=5.
The required values of the stress Green�s function x5;5ðn;mÞ, n ¼ 0; 1; . . . ; 4, m ¼ 0; 1; . . . ; 4, can then be

found using (41) and (53). Then we can use (42) to express the sought standard deviations for initial stress in

four typical members through the Young�s modulus and value se only:
sr 


sr1
sr2
sr3
sr4

0BB@
1CCA ¼ se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X4
n¼0

X4
m¼0

x2
5;5ðn;mÞ

1

1

1
1

0BB@
1CCA

vuuuuut ¼ Ese

0:64531
0:78412
0:74108
0:74108

0BB@
1CCA ð57Þ
(the statistics appeared invariant with respect to the values L and A). Here, parameter se is taken outside the
radical sign, since it reads the same value for all element types in the present problem statement. Thus,

larger initial stresses are expected in horizontal bars, and smaller––in the vertical bars. Logically, stresses in

the left and right diagonal members show a similar distribution; this is determined by the mirror symmetry

of the lattice in relation to a medial line.

This result was verified with numerical Monte–Carlo simulations, where the lack of fit was modelled

through the use of El-Sheikh technique, Fig. 1. The bars� lengths were taken as a random, normally dis-

tributed sample with standard deviation se ¼ 0:0022 for the relative lack of fit e ¼ DL=L; the Young�s
modulus was 200 kN/mm2. For a given sample, the nodal forces were evaluated as explained in Fig. 1, and
displacements––by solving the global stiffness matrix equation Kd ¼ f with periodic (cyclic) boundary

conditions. The initial stress was found after calculating the strain (3), for the four typical members, Fig. 4c.

For each next sample of imperfections, the stress was found for the same set of bars, until the sought

statistics emerged. First, 500 simulations of this kind were accomplished to give Q ¼ 500 random stresses

for a typical member, whose mean standard deviation was calculated conventionally as
lr ¼ 1

Q

XQ
k¼1

rðkÞ; sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q� 1

XQ
k¼1

rðkÞ � lrð Þ2
vuut : ð58Þ
The results obtained were very close to the theoretical predictions, and additional simulations further

verified convergence of the analytical and numerical values. This can be seen from Table 1, and also from

Fig. 4d, where the theoretical and numerical probability density functions are shown to converge with the

growth of Q.
Using the analytical arguments similar to (54)–(57), one can easily evaluate the statistics of stress for

other related lattices. Of particular interest is to investigate its behaviour with the change of lattice size
parameters N , M . Such a study was undertaken over the range N ¼ M ¼ 1; 2; . . . ; 16; the results are pre-

sented graphically in Fig. 4e. Remarkably, with the growth of N , M , the standard deviations do not tend to



Table 1

Means and standard deviations for initial stress (N/mm2) in typical members

Vertical Horizontal Right diagonal Left diagonal

Q ¼ 500 15.04, 287.4 3.968, 343.1 )10.84, 322.0 )9.742, 330.5
Q ¼ 3500 2.322, 284.1 5.875, 344.4 5.109, 327.2 )1.296, 324.94
Theory 0, 283.9 0, 345.0 0, 326.1 0, 326.1
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zeros, in contrast to the case of elastic chain (50). The reason for that is the following: the chain structure
becomes statically determinate in the hypothetical infinite limit N ! 1, when the right end reaction

vanishes. However, the X-braced grid remains indeterminate for the entire range of N , M , including the

infinite limit, due to the redundancy of its individual constituent blocks, for example, the single X-braced

rectangular cells shown Fig. 6a. Thus, with the growth of lattice sizes, the standard deviations for initial

member stresses asymptotically approach some finite non-trivial values that should be typical for all large

lattices, when the boundary effects diminish.
Example 3. Finally, investigate what changes to the obtained distributions can be caused by removing some
redundant elements from the lattice considered in Example 2. For instance, consider removal of the left

diagonal members, Fig. 5a. The associate substructure for the new lattice is shown in Fig. 5b, so that the

values of stiffness kernel function become
Kð0;�1Þ ¼ Kð0; 1Þ ¼ �EA
L

0 0

0 1

� �
; Kð�1; 0Þ ¼ Kð1; 0Þ ¼ � EAffiffiffi

3
p

L

1 0

0 0

� �
;

Kð�1;�1Þ ¼ Kð1; 1Þ ¼ �EA
8L

3
ffiffiffi
3

pffiffiffi
3

p
1

 !
; Kð�1; 1Þ ¼ Kð1;�1Þ ¼ 0;

Kð0; 0Þ ¼ EA
12L

9þ 8
ffiffiffi
3

p
3
ffiffiffi
3

p

3
ffiffiffi
3

p
27

 !
;

ð59Þ
and the displacement Green�s functions simplifies to
G5;5ðn;mÞ ¼
1

25

X4
p¼0

X4
q¼0

eGG5;5ðp; qÞ exp
�
� i

2p
5
ðpnþ qmÞ

�
; eGG5;5ðp; qÞ ¼

eKK�1
5;5ðp; qÞ; p þ q > 0;

0; p ¼ q ¼ 0;

(

eKK5;5ðp; qÞ ¼
EA
6L

8
ffiffiffi
3

p
sin2ðwpÞ þ 9 sin2ðwp þ wqÞ 3

ffiffiffi
3

p
sin2ðwp þ wqÞ

3
ffiffiffi
3

p
sin2ðwp þ wqÞ 3ð8 sin2ðwqÞ þ sin2ðwp þ wqÞÞ

 !
:

ð60Þ
The connectivity matrix, matrices of members� lengths and cross-section areas for the pattern of three

typical members, Fig. 5c, become
b ¼ 1

2

0 �2 0 0 0 2 0 0

�2 0 2 0 0 0 0 0

�
ffiffiffi
3

p
�1 0 0 0 0

ffiffiffi
3

p
1

0@ 1A; L ¼ L
1 0 0

0
ffiffiffi
3

p
0

0 0 2

0@ 1A; A ¼ A
1 0 0

0 1 0

0 0 1

0@ 1A: ð61Þ
Expressions (60) and (61) provide one with all necessary information for calculating the values of stress

Green�s function (41). Employing them for (42), we obtain the following standard deviations for the initial
stress in typical elements:
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Fig. 5. Probability density for the horizontal member stress (d), E ¼ 2� 105 N/mm2, se ¼ 0:0022, and behaviour of standard deviations

(e) after the left diagonal member removal (a–c).
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Fig. 6. Redundant constituent units for the original X-braced grid (a), and after the left diagonal member removal (b); the edge bars are

formally split along to halve the cross-section areas.
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sr 

sr1
sr2
sr3

0@ 1A ¼ se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
n¼0

X4
m¼0

x2
5;5ðn;mÞ

1

1

1

0@ 1A
vuuut ¼ Ese

0:51762
0:62212
0:66409

0@ 1A: ð62Þ
Here, it was similarly assumed that the standard deviation for the relative lack of fit, se, is the same for all

members.

In accordance with (62), the probability distributions for initial member stresses are narrower, when

compared with the corresponding results for the X-braced lattice (57). The analytical data (62) were sim-

ilarly verified with a series of numerical Monte–Carlo simulations. The theoretical and numerical results are

in good agreement. Their convergence with the growth of number of calculation is depicted in Fig. 5d for
the horizontal members.

Although the single rectangular cell with one diagonal is a non-redundant structure, the behaviour of the

standard deviations with the change of N , M , Fig. 5e, is similar to the previous case shown in Fig. 4e. When

N ;M ! 1, these parameters asymptotically tend to some fixed finite values, so that no decay to the zero

level, as in (50), appears. We can attribute this phenomenon to the presence of a larger redundant con-

stituent unit for this structure, depicted in Fig. 6b.
5. Concluding remarks

In this paper, an analytical approach for studying initial member stress in regular lattice structures with

geometrical imperfections has been presented. Solutions to benchmark problems have been verified through
direct Monte–Carlo simulation. The study of particular example structures indicates that the initial member

stress can be diminished substantially with the members redundancy decrease. However, the effect will

reveal itself in all cases, when the lattice features a redundant constituent block, even if the latter is

comprised of several typical cells.

The periodic boundary model considered provides a reliable approximation for large realistic problems.

Importantly, it yields higher values for the standard deviations in studying smaller lattices, compared with

those for N ;M ! 1 (Figs. 4e and 5e). Hence the use of this approximation will not lead to underestimation

of this dangerous phenomenon in realistic finite structures, and in the analysis of edge clamped lattices it
will provide one with almost exact solutions. Besides, the obvious computational effectiveness of the ap-

proach, compared with numerical techniques is another important advantage. For most problems the cost

of analytical evaluation of the statistical parameters with the use of (40) or (42) is not more than the cost of

one random lattice simulation. This implies savings in CPU effort up to 103–104 times, compared with

numerical Monte–Carlo simulations, when reliable estimates are sought.
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The asymptotical behaviour of the standard deviations in the limit N ;M ! 1 is particularly remarkable,

and its further analysis is planned. The approach can be also modified for studying residual stress in dis-

ordered crystal lattices.
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